

Date: SEP 2023 Team: Mr.A.Ravikumar – GM-Engg Mr.S.Boopathi – DM- Elect

ABOUTUS

Installation of 19MW Cogeneration Power Plant

Second Stage Expansion to 3500 TCD

First stage Expansion to 2500 TCD

1984

Sugar Mill Inception – 1250TCD structured on the concept of bagasse to paper production

ABOUT US

Startup cane crushing Capacity (TCD)

Present cane crushing Capacity (TCD)

Factory Area (acres)

Colony Area (acres)

1250

3500

33.51

9.10

No. of Cultivators
4500

No of Employees Regular - 133 Seasonal – 147 280

No. of Employee Quarters 145

ABOUT US

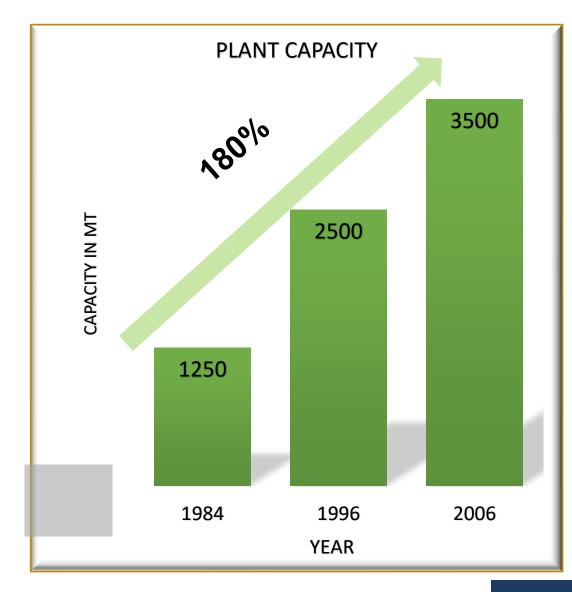
<u> </u>

Innovative structuring as backward integration to paper

First to commit bagasse for paper and derive value addition

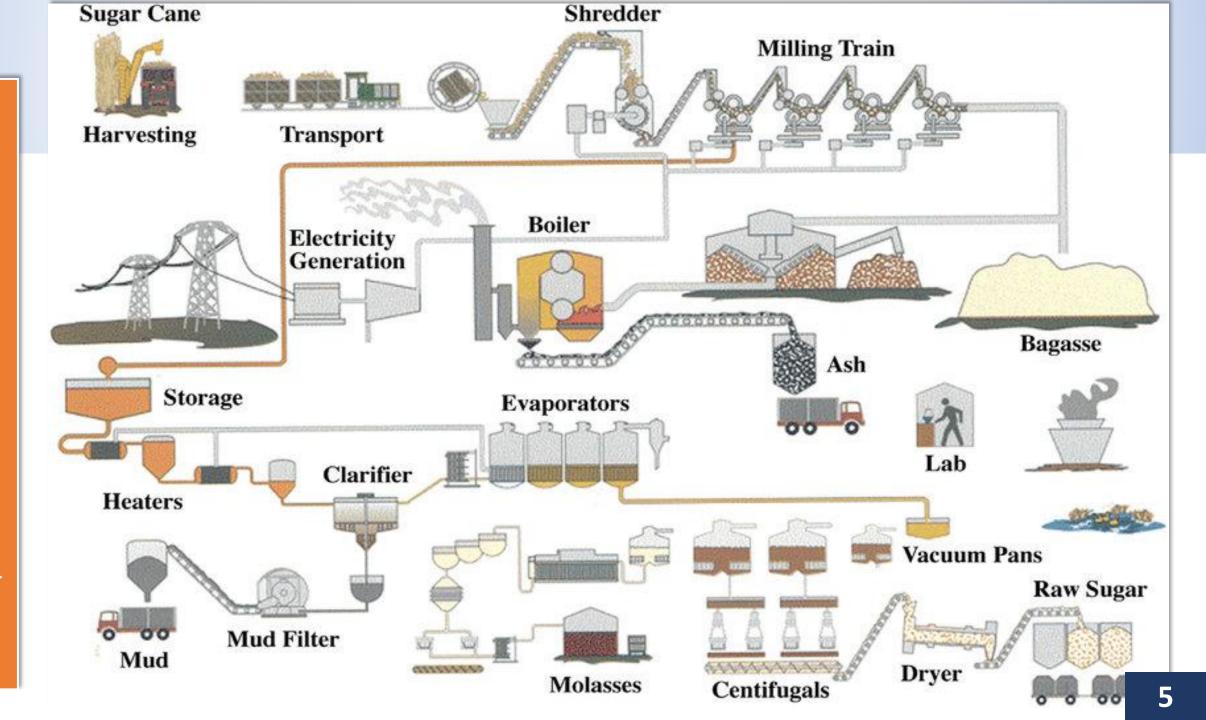
Pioneered long sugar season

Implemented a unique effluent irrigation scheme converting waste to wealth

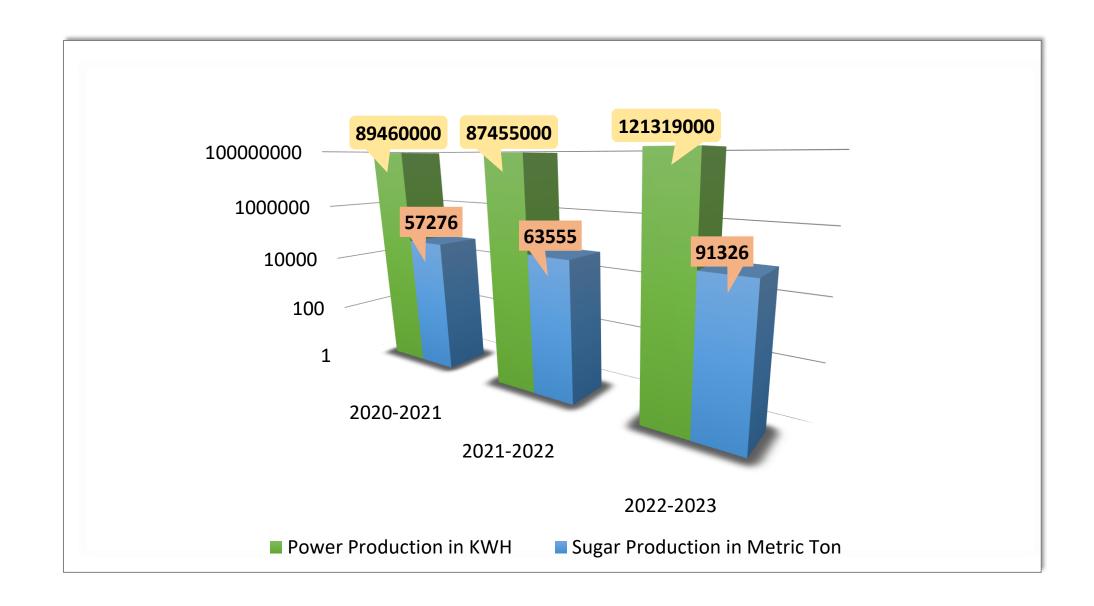

ISO 9001:2015 certified for Quality Management System

ISO 14001:2015 certified for Environmental Management System

ISO 45001:2018 certified for Occupational Health and Safety Management System

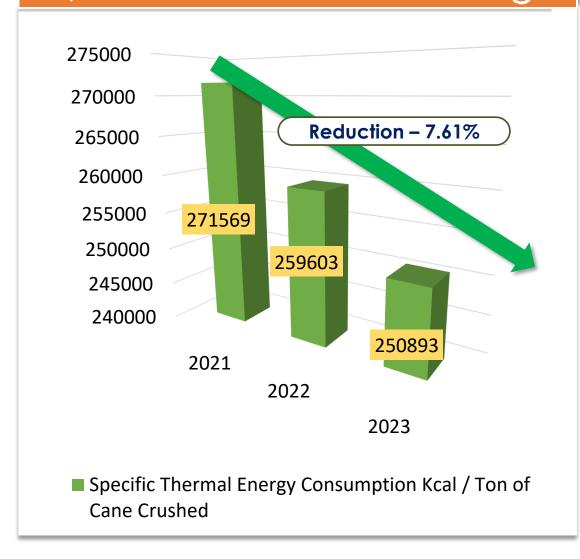


LAYOUT OF PONNI SUGARS

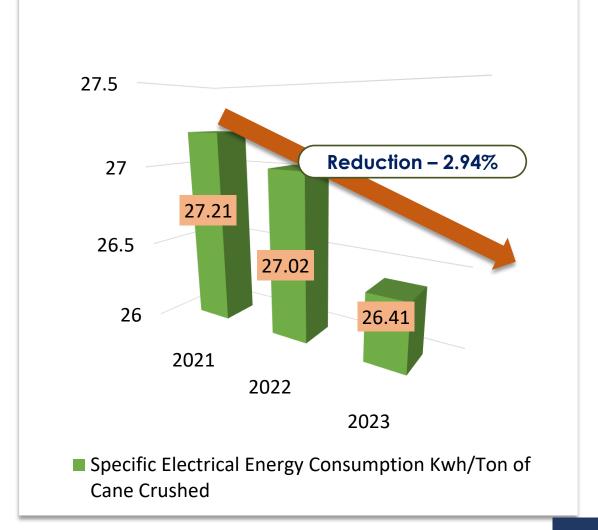


SPECIFIC ENERGY CONSUMPTION (FY 2020-23)

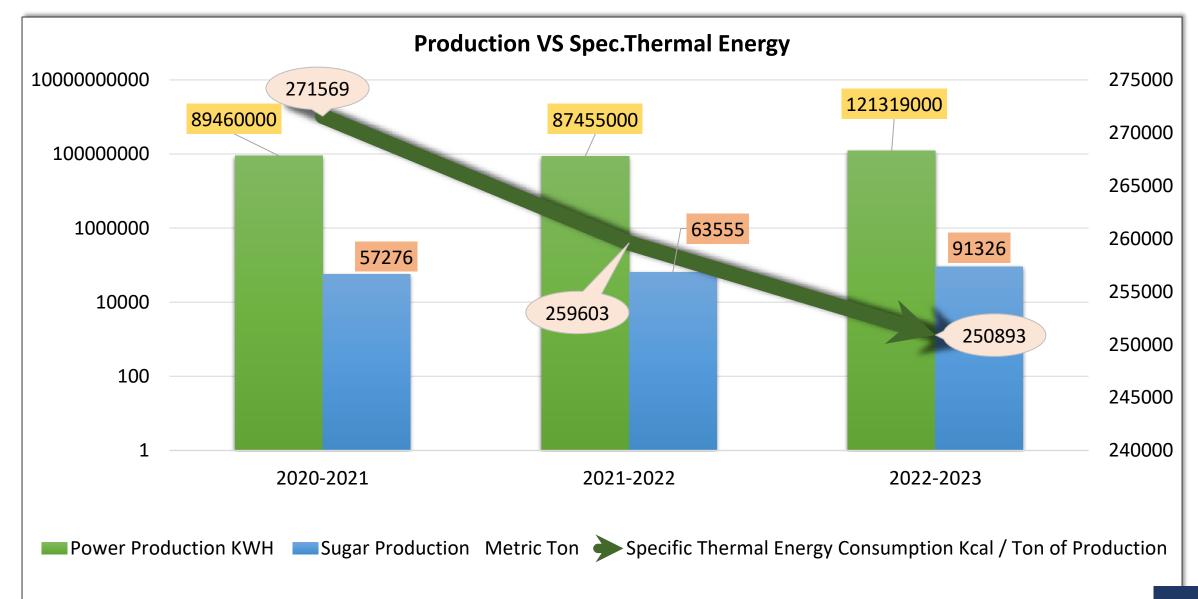
Specific Energy Consumption	UOM	2020-21	2021-22	2022-23	
Electrical	Kwh/Ton of Cane Crushed	27.21	27.02	26.41	
Thermal	Kcal/Ton of Cane Crushed	271569	259603	250893	



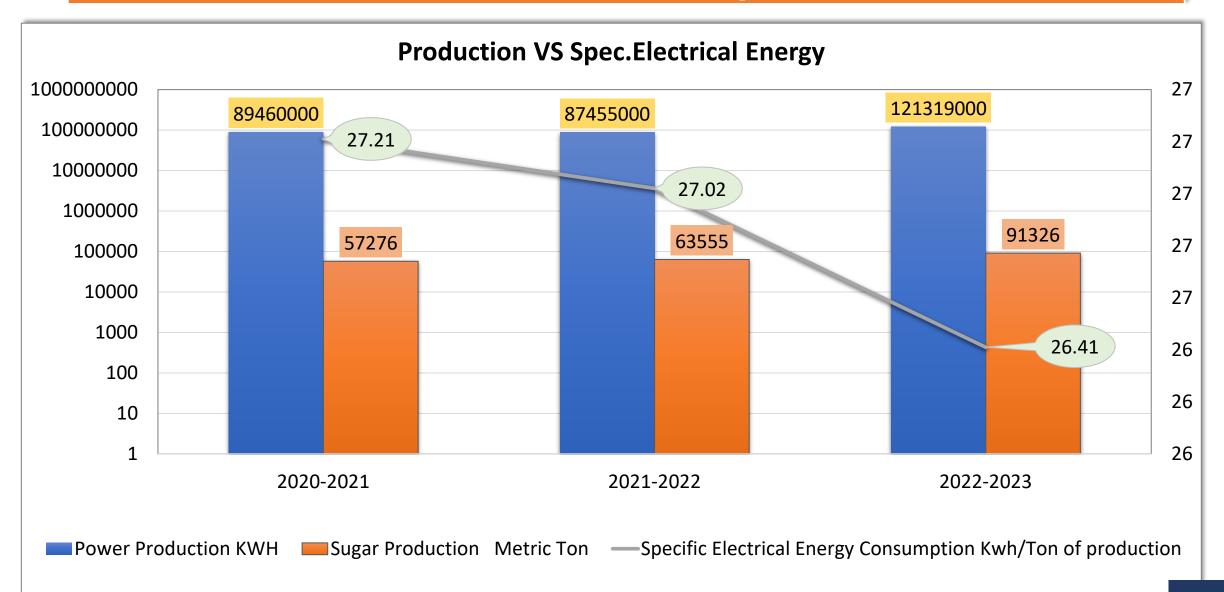
PRODUCTION DATA



Specific Thermal Energy



Specific Electrical Energy



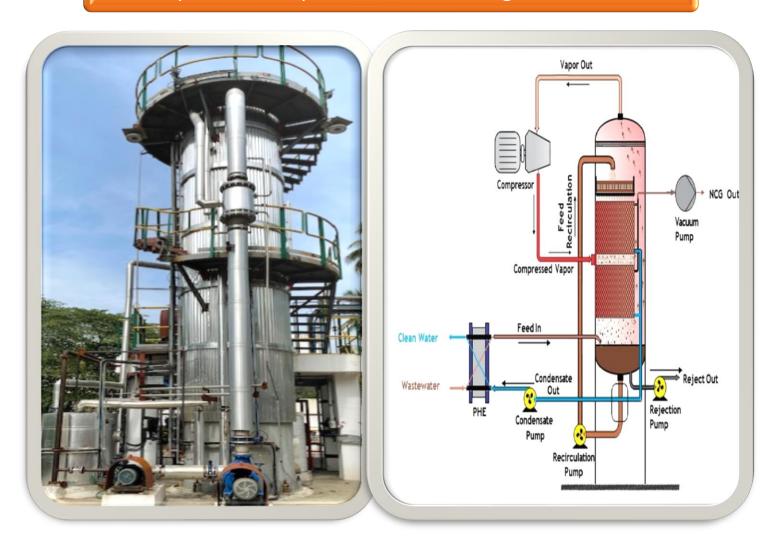
Specific Thermal Energy Consumption

Specific Electrical Energy Consumption

BENCHMARK

Parameters	Ponni Benchmark	Global benchmark	Achieved
Specific Thermal Energy Consumption	39.00	38.0 % As per ISSCT proceedings 2005	38.59
Specific Electrical Energy consumption	26.5	27-28 kWh/ton of cane As per NFCSF	26.41

LIST OF ENCON PROJECTS PLANNED- 2023-24


No	Title of Project	Annual Electrical Saving (Million kwh)	Annual Thermal Saving (Million Kcal)	Investment in Million R	Comment
1	2500M2 Falling Flim Evaporator Installation	0	11700	35	Replacement for Low efficiency Roberts type evaporator.
2	Replacement of 5th Mill DC System with AC system,	0.18	0	5	DC motor was employed, which resulted higher power consumption.
3	Fan-less Cooling Tower Installation	0.25925	0	4	There were four cooling fans were utilised and it was consumed more power
4	Solar Street Light Installation	0.000256	0	0.25	There was no solar energy harvesting
5	IE3/IE4 Energy Efficient Motor Installation	0.0153	0	1.4	Lower Efficiency motor consumed more power
6	Hot Condensate Pump 30M ³ VFD installation	0.01836	0	0.4	11KW motor was in DOL mode and it consumed more power
7	Solar water heater for Ponni emergency quarters (D-Type)	0.035	0	0.225	Electric geyser was utilised and it consumed more power 12

2500M2 Falling Flim Evaporator Installation

WELCOM

Low temperature evaporator for thickening of caustic soda

ENERGY SAVING PROJECTS IMPLEMENTED IN LAST THREE YEARS

Year	No of Energy saving projects	Investment (INR Million)	Electrical savings (Million kWh)	Thermal savings (Million Kcal)	Total Savings (INR Million)	Payback period (in months)
2020-21	8	2.036	0.36	0	0.717	34
2021-22	7	4.655	0.153	0	0.8	70
2022-23	6	10.537	0.055	4667	6.66	19

LIST OF ENCON PROJECTS IMPLEMENTED - 2020-21

S.No	Name of Energy saving projects	Investments (INR Million)	Electrical savings (Million kWh)	Thermal savings (Million Kcal)	Total Savings (INR Million)	Payback (Months)
1	VFD -55KW Installed for treated juice pump	0.23	0.037	0	0.195	14
2	VFD-11 KW installed for syrup pump	0.108	0.041	0	0.216	6
3	VFD-7.5 KW installed for clear syrup pump	0.038	0.01	0	0.053	9
4	VFD -55KW Installed for Air Blower	0.254	0.011	0	0.058	53
5	VFD installed for cane unloader-1 - Four Numbers (30KW-2 Nos, 15KW-01 No,7.5KW-01 No)	0.731	0.006	0	0.031	283
6	Inverter Type Air conditioner -10 Numbers	0.55	0.007	0	0.034	194
7	Alternator Coolers control valves Automation	0.125	0.019	0	0.1	15
8	Return Bagasse Conveyor Motor Power Reduction from 45KW to 15KW	0	0.005	0	0.03	Spare one
	Total	2.036	0.36	0	0.717	34

pumps and CPU DG transfer pumps

& BC-3

VFD provided to Bagasse conveyor BC-2

LIST OF ENCON PROJECTS IMPLEMENTED - 2021-22

Investments

Electrical savings

0.012

0.153

0

0

5.NO	Name of Energy saving projects	(INR Million)	(Million kWh)	(Million Kcal)	(INR Million)	(Months)
	VFD installed for mill juice pumps - 6 Nos 7.5KW-3 Nos, 11KW-1 No & 15KW-2 Nos	0.794	0.006	0	0.033	289
2	VFD provided for SSRE-1,2,3&5th rake elevator(11KW-3 Nos & 18.5KW-1 No)	0.787	0.008	0	0.039	242
3	4th Mill Motor power rating reduction from 750KW to 550KW -01 no (120Kwh)	2	0.03	0	0.157	153
4	VFD - 55KW Installed for Air Compressor- 01 no (100Kwh)	0.36	0.025	0	0.131	33

In 1st Godown area we implemented LED lamp (145W-12Nos & 72W-6Nos) 0.06 0.31 0.114 0 (24Kwh)

0.3

4.655

44 VFD provided to RO plant High pressure 0.3 0.012 0 0.065

55

55

Thermal savings **Total Savings**

0.065

0.8

Payback

LIST OF ENCON PROJECTS IMPLEMENTED - 2022-23

S.No	Name of Energy saving projects	Investments (INR Million)	Electrical savings (Million kWh)	Thermal savings (Million Kcal)	Total Savings (INR Million)	Payback (Months)
1	Plate type Heat Exchanger for raw juice heating	4.2	0	4628.0	6.31	8
2	Mechanical Vapour Re- compression system	3.5	0	39.6	0.05	778
3	VFD installation to Wet Scrubber system pumps (7.5KW-2No & 3.7KW - 2No)	0.5	0.007	0	0.04	52
4	Energy Efficient Air Compresser	1.64	0.022	0	0.12	164
5	IE3/IE4 Energy Efficient Motor	0.097	0.004	0	0.024	49
6	Sealing Air Automation and Coal Spreader air flow control	0.6	0.022	0	0.12	60
		10.537	0.055	4667.6	6.66	19
						MUNICIPAL DE LA CONTRACTOR DE LA CONTRAC

S.No	Name of the Project	Year of implementation	Annual Savings (Rs. in Lakhs)	Investment (Rs. In Lakhs)
1.	Automation of cooling water to Alternator	2021	1.32	1.2
2.	Automation system for fuel silo doors	2020	0.65	3

Automation of cooling water to Alternator

- Factory has a 19MW synchronous generator with water cooling system.
- o Four water coolers handle 40m³/hr each installed for the above.
- As per design 3 Numbers of water cooler are sufficient for 100% generation.
- All Coolers kept fully open regardless of power generation by operators on fear.
- O To overcome the above, we planned to implement the automation.
- Two pneumatic control valves with bypass system to act according to the winding temperature.
- Replicability: Two nearer sugar factories had visited our factory for implementing this project.
- Achieved energy savings in cooling water pumping system: 83 kWh/day.

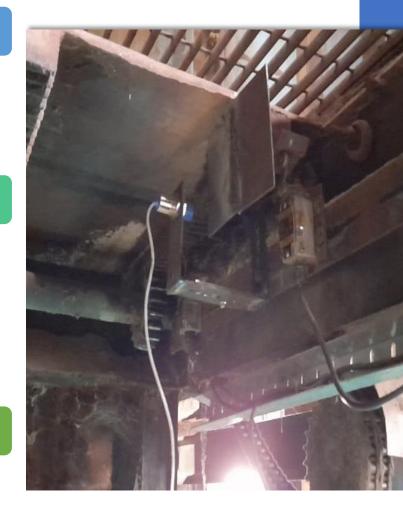
Automation system for Fuel Silo Doors

Root Cause: Fuel compression during fuel silo levelling with different fuel sizes.

- Our boiler originally designed to use bagasse, bagasse pith, and coal as fuels.
- \circ We have trailed 150 fuels ,out of which presently we are using 14 fuels only.
- Problem: Failure of fuel feeders while using other than designed fuels.
- Impact: More unburnt fuel from boiler impacting boiler efficiency which leads to high Specific steam consumption In turbine.
- Innovation: We improved the system by installing motorised silo doors with level sensors. The automation logic was developed based on silo level to avoid the fuel compression.

Automation system for Silo Doors

Ponni demonstrated operational excellence by implementing the following changes:


- Replaced manual fuel feeding doors with electrically actuated ones.
- Silos equipped with level sensors for monitoring fuel levels.
- Silo level feedback controls actuation of fuel feeding doors.
- Front-end fuel conveyor speed adjusted based on silo level to maintain balance.
- Multiple fuel feeding points on-site, all controlled through automation.

Benefits achieved:

- Constant main steam pressure because of even fuel feeding.
- Reduced wear and tear of conveying and feeding equipment.
- Before the average pressure of the boiler was 99 kg/cm2 against 112kg/cm2 now we have achieved 108kg/cm2
- We have brought down the specific steam consumption from 5.2T/MW to 5.0T/MW

Replicability

• This solution will be very useful for those who are using biofuels of different varieties.

UTILISATION OF RENEWABLE ENERGY SOURCES

S.No	Title of Project	Year	Annual Electrical Saving (kWh)	Electrical saving (kw)	Annual Electrical Cost Saving (Rs million)	Total Annual Savings (Rs million)	Investment Made (Rs million)	Payback (Months)	Comments
1.	Solar based Stand alone LED lights	2021-22	1000	0.35	0.005	0.005	0.1	240	There was no solar energy harvesting installations

GHGINVENTORISATION

SCOPE –I EMISSION 2022-2023							
Fuel	MT	CO ₂ e MT	Sugar Prod MT	CO ₂ e MT / Ton of Prod			
Coal	10984	16651					
Biofuel	253388	253388	91326	2.96			
		270039	31320				
SCOPE - II	85.6 MW	61		0.00067			
	Total Emission		Scope-1 + Scope-2	2.96			

EMS SYSTEMS

Learning from CII or other award programs

- Installed Energy Monitoring system on March 2021
- Hook-up of 70 Energy meters
- Implementation of DCS for Sugar Plant
- Conducting Periodical Energy audits once in two years.
- Setting Energy Goals & targets through management systems for reducing energy consumption, increasing energy efficiency.
- Identify Best Practices: Following good practices and strategies of awarded companies in our organization.
- Networking: Attend award events to network with industry leaders and experts for knowledge sharing and collaborations.
- Adaptation to Trends: Get informed about industry trends through award categories that reflect emerging priorities.
- Continuous Improvement: Analyse award-winning companies' commitment to continuous improvement to foster a similar culture in our organization.

AWARDS AND RECOGNITIONS

Year	Awards won	Awarded by
2016-17	Best performing co-generation award Platinum award	The South Indian sugarcane & sugar technologists association
2018-19	Best performing co-generation award Platinum award	The South Indian sugarcane & sugar technologists association
2020-21	Best co-generation award Platinum award	The South Indian sugarcane & sugar technologists association
2021-22	Best co-generation award(Private sugar factory Category) Rank 2	Cogeneration Association of India
2022-23	National Energy Conservation Award -2022 1st prize (Sugar Sector)	Government of India Ministry of power
		25

Ponni Sugars (Erode) Ltd won 1st prize (Sugar Sector) 14.12.2022

0.29

Million

THANK YOU

Mr.A.Ravikumar GM-Engg ar@ponnisugars.com 9345940280

